David Rees' 1956 paper

0.1 Definition of the Rees ring $R(A, \mathfrak{a})$

Write $A[t, t^{-1}]$ for the Laurent polynomial ring over a ring A with t an indeterminate of degree 1. For $\mathfrak{a} = (a_1, \ldots, a_m)$ an ideal in A, the Rees ring $R(A, \mathfrak{a})$ is the \mathbb{Z} -graded subring $R(A, \mathfrak{a}) \subset A[t, t^{-1}]$ generated by a_1t, \ldots, a_mt and t^{-1} . It has degree -k graded piece $t^{-k}A$ for -k < 0.

A Laurent polynomial $c = \sum c_r t^r \in A[t, t^{-1}]$ is in $R(A, \mathfrak{a})$ if and only if $c_r \in \mathfrak{a}^r$ for $r \ge 0$. Identify A with the degree 0 piece $A = R_0 \subset R$. If we set $u = t^{-1}$ for the negative generator¹ of $A[t, t^{-1}]$ then multiplication by $u^n = t^{-n}$ takes the degree n piece R_n of $R(A, \mathfrak{a})$ into $t^{-n}R_n \cap A = (\mathfrak{a}^n) \subset A$.

The Rees ring $R(A, \mathfrak{a})$ is Noetherian if A is. The quotient ring $R(A, \mathfrak{a})_{\geq 0}/(t)$ is the graded ring $\operatorname{gr}_{\mathfrak{a}} A = \bigoplus \mathfrak{a}^n/\mathfrak{a}^{n+1}$ as discussed in [Ma, p. 120].

0.2 Krull's intersection theorem

Theorem 0.1 For an ideal a of a Noetherian ring

$$x \in \bigcap_{0}^{\infty} \mathfrak{a}^{n} \iff x = ax \quad for some \ a \in \mathfrak{a}$$

Proof The implication \Leftarrow is trivial. To prove the converse \Rightarrow , Step 1 is the special case with $\mathfrak{a} = (u)$ principal, generated by a nonzerodivisor u. Since $x \in \mathfrak{a}^i$ for every i, we can write $x = u^i y_i$. The Noetherian assumption applied to the ascending chain $\cdots \subset (y_i) \subset (y_{i+1}) \subset \cdots$ gives $(y_n) = (y_{n+1})$ for some n. Thus $y_{n+1} = by_n$, and hence $y_n = ay_n$ where $a = bu \in \mathfrak{a}$. Then $ax = u^n ay_n = u^n y_n = x$.

The Rees ring $R(A, \mathfrak{a})$ reduces the general case $\mathfrak{a} = (a_1, \ldots, a_m)$ to the case of a principal ideal (u). The element $u = t^{-1} \in R(A, \mathfrak{a})$ is a nonzerodivisor. If $x \in A$ is contained in \mathfrak{a}^i then $x \in u^i R$. So by Step 1 there exists $c = \sum c_r t^r \in R(A, \mathfrak{a})$ for which x = xcu. Now $x \in A$, so that x = ax, where $a = c_1 \in \mathfrak{a}$. This proves the theorem. \Box

¹Including the negatively graded part of R allows u as a ring element; its main role is simply to relabel an element of R_n as an element of $\mathfrak{a} \cdot R_{n-1}$. We sometimes tacitly work only with $\bigoplus_{n\geq 0} R_n$.

Preparation for the Principal Ideal Theorem

Lemma 0.2 (Prototype for the Artin–Rees lemma) Let $\mathfrak{a}, \mathfrak{b}$ be ideals of a Noetherian ring A. Then there exists an integer k such that

$$\mathfrak{a}^n \cap \mathfrak{b} = (\mathfrak{a}^k \cap \mathfrak{b})\mathfrak{a}^{n-k} \quad for \ all \ n \ge k.$$

Proof Setting $\mathfrak{b}^* = \mathfrak{b}A[t, t^{-1}] \cap R$ defines a homogeneous ideal \mathfrak{b}^* of $R = R(A, \mathfrak{a})$. It consists of all sums $\sum b_r t^r$ with $b \in \mathfrak{a}^r \cap \mathfrak{b}$. Since R is Noetherian, \mathfrak{b}^* is generated by finitely many elements of the form $b_r t^r$. Taking k as the largest exponent of t involved among these generators gives at once

$$\mathfrak{a}^n \cap \mathfrak{b} = (\mathfrak{a}^k \cap \mathfrak{b}^*) = (\mathfrak{a}^k \cap \mathfrak{b})\mathfrak{a}^{n-k}$$
 for all $n \ge k$.

Corollary 0.3 Suppose $x \in A$ is a nonzerodivisor. Write $\mathfrak{a}^n : x$ for the colon ideal $\{c \in A \mid xc \in \mathfrak{a}^n\}$. There exists an integer k for which

$$\mathfrak{a}^n: x \subset \mathfrak{a}^{n-k} \quad for \ all \ n \ge k.$$

Proof By Lemma 0.2, there exists k such that

$$\mathfrak{a}^n \cap xA = (\mathfrak{a}^k \cap xA)\mathfrak{a}^{n-k} \subset x\mathfrak{a}^{n-k} \quad \text{for all } n \ge k.$$

But $\mathfrak{a}^n \cap xA = x(\mathfrak{a}^n : x)$. Now since x is a nonzerodivisor, $(\mathfrak{a}^n : x) \subset \mathfrak{a}^{n-k}$.

0.3 Krull's Hauptidealsatz (Principal Ideal Theorem)

Theorem 0.4 Let A be a Noetherian local domain with maximal ideal m. Assume some principal ideal Ax is m-primary. Then every nonzero ideal of A is m-primary. In other words, m is the unique nonzero prime ideal of A or Spec $A = \{0, m\}$.

Proof Let $y \in A$ be a nonzero element. Apply Lemma 0.2 to $\mathfrak{a} = (x)$ and $\mathfrak{b} = (y)$ to get an integer k such that

$$x^{k+1}A \cap yA = x(x^kA \cap yA). \tag{1}$$

Claim (1) implies that $(x^{k+1}, y) = (x^k, y)$. The claim implies the theorem: it gives $x^k = ax^{k+1} + by$ for some $a, b \in A$, that we rewrite as

$$(1 - ax)x^k = by \in yA.$$

Now (1 - ax) is a unit of A, so that $x^k = by \in yA$, and yA is m-primary. Thus every nonzero ideal of A is m-primary.

To prove the claim, use the fact that since (x^n) is *m*-primary, $A/(x^n)$ and any of its subquotients are modules of finite length. There is an obvious inclusion

$$(x^{k+1}, y) \subset (x^k, y).$$

Calculating lengths of $A/(x^{k+1}, y)$ and $A/(x^k, y)$, we find that they are equal, and hence $(x^{k+1}, y) = (x^k, y)$. Start from

$$(x^{k+1}A + yA)/x^{k+1}A \cong yA/(x^{k+1}A \cap yA)$$

by the Third Isomorphism theorem $(M+N)/N \cong M/(M \cap N)$. Now

$$\ell(yA/(x^{k+1}A \cap yA)) = \ell(yA/x(x^kA \cap yA)) \quad \text{by (1)}$$

$$= \ell (yA/xyA) + \ell (xyA/x(x^kA \cap yA))$$
(3)

$$= \ell (A/xA) + \ell (yA/(x^kA \cap yA))$$
(4)

$$= \ell (A/xA) + \ell (yA/(x^{k}A \cap yA))$$

$$= \ell (x^{k}A/x^{k+1}A) + \ell ((x^{k}A + yA)/x^{k}A)$$

$$(5)$$

$$\ell ((x^{k}A + xA)/x^{k+1}A)$$

$$(6)$$

$$=\ell((x^{k}A+yA)/x^{k+1}A).$$
(6)

Step-by-step: (2) to (3) inserts the intermediate ideal xyA between yA and $x(x^kA \cap yA)$. (3) to (4) uses multiplication by the nonzero element y in the domain A to give an isomorphism $A/xA \cong yA/xyA$ and similarly with x for the second summand. (4) to (5) multiplies by x^k on the first summand, and applies the Third Isomorphism theorem for the second. Then (5) to (6) omits the intermediate ideal $x^k A$. (Kaplansky's more structured interpretation is discussed below.)

Putting everything together gives

$$\ell((x^{k+1}A + yA)/x^{k+1}A) = \ell((x^kA + yA)/x^{k+1}A).$$

Since $x^k A + y A \supset x^{k+1} A + y A$, the claim follows.

Corollary 0.5 (Krull's Hauptidealsatz) In a Noetherian ring, if P is a minimal prime containing a principal ideal Ax then P has height ht P < 1.

Theorem 0.4 is the statement in the case of a local domain. Two straightforward steps reduce the general Noetherian case to this: we get the local case since a chain of primes $P_0 \subsetneq P_1 \subsetneq P$ in A would give a chain of prime ideals $P_0A_P \subsetneq P_1A_P \subsetneq PA_P$ in the local ring (A_P, PA_P) . And by passing to the quotient rings $0 \subsetneq P_1/P_0 \subsetneq A/P$ reduces to a domain. This proves the theorem.

With hindsight, Kaplansky explains what is going on in Rees' display (2-6) more simply and convincingly. The same appeal to Lemma 0.2 gives (1). He now sets $u = x^k$ and interprets (1) as saying

$$tu^2 \in (y) \implies tu \in (y). \tag{!}$$

That is, the basic form of Artin–Rees allows us to cancel a power of u.

Now consider the submodule

$$(u^2, y)/u^2 \subset (u, y)/u^2.$$
 (7)

Claim Assumption (!) implies equality in (7). The part equals the whole.

In fact on the rhs, inserting the submodule (u) gives the composition series $(u, y) \supset (u) \supset (u^2)$ with factors A = (u, y)/u followed by $B = u/u^2$.

The lhs has composition series $(u^2, y) \supset (u^2, uy) \supset (u^2)$ with factors $C = (u^2, y)/(u^2, uy)$ and $D = (u^2, uy)/(u^2)$.

Now $A = (u, y)/(u) \cong D = (u^2, uy)/u^2$ (multiplying by u in a domain as in (3) to (4) of Rees' display). And

$$B = (u)/(u^2) \cong C = (u^2, y)/(u^2, uy),$$

follows using the magic implication (!).

We are in the Artinian set-up. The two modules in the claim both have the same finite length, and this proves the claim. \Box

Commentary

Let A be a Noetherian ring. The Zariski topology on Spec A is Noetherian. Minimal prime ideals $P \in \text{Spec } A$ correspond to its finitely many irreducible components.

Krull's 1928 Hauptidealsatz: Suppose A is Noetherian and $x \in A$. Then a prime ideal $P \in \text{Spec } A$ minimal among prime ideals containing x has ht $P \leq 1$.

If ht P = 0 then P itself is a minimal prime of A. The alternative ht P = 1 means that any $q \in \operatorname{Spec} A$ with $q \subsetneq P$ is a minimal prime ideal of A (and there exists at least one such). The result is nontrivial (Melvyn Hochster says it caused amazement in 1928). It is a corollary of the main theorem of dimension theory for Noetherian local rings. There are a number of fairly unreadable proofs online, including that in Wikipedia (someone should beat that up).

References

- David Rees, Two classical theorems of ideal theory, Proc. Cambridge Philos. Soc. bf52 (1956) 155–157
- [2] Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, MA (1970) x+180 pp.
- [3] Hideyuki Matsumura, Commutative ring theory, Cambridge Stud. Adv. Math. 8 CUP (1986) xiv+320 pp.
- [4] Melvin Hochster, Lecture notes https://dept.math.lsa.umich.edu/~hochster/615W17/supDim.pdf
- [5] Google search for Krull Hauptidealsatz gives https://en.wikipedia.org/wiki/Krull%27s_principal_ideal_theorem